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Abstract

The treatment of equality as a type in type theory gives rise to an
interesting type-theoretic structure known as ‘identity type’. The idea
is that, given terms a, b of a type A, one may form the type IdA(a, b),
whose elements are proofs that a and b are equal elements of type A. A
term of this type, p : IdA(a, b), makes up for the grounds (or proof) that
establishes that a is indeed equal to b. Based on that, a proof of equality
can be seen as a sequence of substitutions and rewrites, also known as a
‘computational path’. One interesting fact is that it is possible to rewrite
computational paths using a set of reduction rules arising from an anal-
ysis of redundancies in paths. These rules were mapped by De Oliveira
in 1994 in a term rewrite system known as LNDEQ − TRS. Here we use
computational paths and this term rewrite system to develop the main
foundations of homotopy type theory, i.e., we develop the lemmas and
theorems connected to the main types of this theory, types such as prod-
ucts, coproducts, identity type, transport and many others. We also show
that it is possible to directly construct path spaces through computational
paths. To show this, we use our path-based approach to construct two
important structures of homotopy type theory: the path-space of natural
numbers and the construction and calculation of the fundamental group
of the circle.
Keywords. Computational paths, type theory, identity type, fundamen-

tal group of the circle, term rewriting systems.

1 Introduction

There seems to be little doubt that the identity type is one of the most intrigu-
ing concepts of Martin-Löf’s Type Theory. This claim is supported by recent
groundbreaking discoveries. In 2005, Vladimir Voevodsky [17] discovered the
Univalent Models, resulting in a new area of research known as homotopy type
theory [1]. This theory is based on the fact that a term of some identity type,
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for example p : IdA(a, b), has a clear homotopical interpretation. The inter-
pretation is that the witness p can be seen as a homotopical path between
the points a and b within a topological space A. This simple interpretation
has made clear the connection between type theory and homotopy theory, gen-
erating groundbreaking results, as one can see in [16, 1]. Nevertheless, it is
important to emphasize that the homotopic paths exist only in the semantic
sense. In other words, there is no formal entity in type theory that represents
these paths. They are not present in the syntax of type theory.

In this work, we are interested in an entity known as computational path,
originally proposed by [8]. A computational path is an entity that establishes
the equality between two terms of the same type. It differs from the homotopi-
cal path, since it is not only a semantic interpretation. It is a formal entity of
the equality theory. In fact, we proposed in [7, 14] that it should be considered
as the type of the identity type. Moreover, we have further developed this idea
in [15], where we proposed a groupoid model and proved that computational
paths also refute the uniqueness of identity proofs. Thus, we obtained a result
that is on par with the same one obtained by Hofmann & Streicher (1995) for
the original identity type [12].

Our main idea in this work is to develop further our previous results. Specif-
ically, we want to focus on the foundations of homotopy type theory. Our ob-
jective is to develop the main building blocks of this theory using computational
paths. To do this, we prove quite a few lemmas and theorems of homotopy
type theory involving the basic types, such as products, coproducts, transport,
etc. We thus proceed to show that computational paths can be directly used
to simulate path spaces. We argue that this is one of the main advantages
of our approach, since it avoids the use of complicated techniques such as the
code-encode-decode one. To illustrate that, we work with the natural numbers
and with the fundamental group of the circle, showing how one can construct
these structures through computational paths. These results also establish the
foundations needed to calculate fundamental groups of many other structures.
Indeed, we do these calculations in a recent and still unpublished work entitled
“On the Calculation of Fundamental Groups in homotopy type theory by Means
of Computational Paths”. A preprint version of that work can be found in [9].

This work is structured as thus: in sections 2, 3 and 4, we review the
concept of computational paths and its connection to the identity type in type
theory. In section 5, we use computational paths to establish the foundations
of homotopy type theory. Since sections 2, 3 and 4 are only brief introductions
to the theory of computational paths, we refer to papers [7] and [15] for a
thorough introduction to this subject.
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Computational Paths

Since computational path is a generic term, it is important to emphasize the
fact that we are using the term computational path in the sense defined by
[5]. A computational path is based on the idea that it is possible to formally
define when two computational objects a, b : A are equal. These two objects
are equal if one can reach b from a applying a sequence of axioms or rules. This
sequence of operations forms a path. Since it is between two computational
objects, it is said that this path is a computational one. Also, an application of
an axiom or a rule transforms (or rewrite) an term in another. For that reason,
a computational path is also known as a sequence of rewrites. Nevertheless,
before we define formally a computational path, we can take a look at one
famous equality theory, the λβη − equality [11]:

Definition 1.1 The λβη-equality is composed by the following axioms:

(α) λx.M = λy.M [y/x] if y /∈ FV (M);

(β) (λx.M)N = M [N/x];

(ρ) M = M ;

(η) (λx.Mx) = M (x /∈ FV (M)).

And the following rules of inference:

M = M ′(µ)
NM = NM ′

M = N N = P(τ)
M = P

M = M ′(ν)
MN = M ′N

M = N(σ)
N = M

M = M ′(ξ)
λx.M = λx.M ′

Definition 1.2 ( [11]) P is β-equal or β-convertible to Q (notation P =β Q)
iff Q is obtained from P by a finite (perhaps empty) series of β-contractions and
reversed β-contractions and changes of bound variables. That is, P =β Q iff
there exist P0, . . . , Pn (n ≥ 0) such that P0 ≡ P , Pn ≡ Q, (∀i ≤ n−1)(Pi .1β
Pi+1 or Pi+1 .1β Pi or Pi ≡α Pi+1).

(NB: equality with an existential force, which will show in the proof rules for
the identity type.)

The same happens with λβη-equality:
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Definition 1.3 (λβη-equality [11]) The equality-relation determined by the
theory λβη is called =βη; that is, we define

M =βη N ⇔ λβη `M = N.

Example 1.4 Take the term M ≡ (λx.(λy.yx)(λw.zw))v. Then, it is βη-
equal to N ≡ zv because of the sequence:
(λx.(λy.yx)(λw.zw))v, (λx.(λy.yx)z)v, (λy.yv)z, zv
which starts from M and ends with N , and each member of the sequence is
obtained via 1-step β- or η-contraction of a previous term in the sequence. To
take this sequence into a path, one has to apply transitivity twice, as we do in
the example below.

Example 1.5 The term M ≡ (λx.(λy.yx)(λw.zw))v is βη-equal to N ≡ zv
because of the sequence:
(λx.(λy.yx)(λw.zw))v, (λx.(λy.yx)z)v, (λy.yv)z, zv
Now, taking this sequence into a path leads us to the following:
The first is equal to the second based on the grounds:
η((λx.(λy.yx)(λw.zw))v, (λx.(λy.yx)z)v)
The second is equal to the third based on the grounds:
β((λx.(λy.yx)z)v, (λy.yv)z)
Now, the first is equal to the third based on the grounds:
τ(η((λx.(λy.yx)(λw.zw))v, (λx.(λy.yx)z)v), β((λx.(λy.yx)z)v, (λy.yv)z))
Now, the third is equal to the fourth one based on the grounds:
β((λy.yv)z, zv)
Thus, the first one is equal to the fourth one based on the grounds:
τ(τ(η((λx.(λy.yx)(λw.zw))v, (λx.(λy.yx)z)v), β((λx.(λy.yx)z)v, (λy.yv)z)),
β((λy.yv)z, zv)))

The aforementioned theory establishes the equality between two λ-terms.
Since we are working with computational objects as terms of a type, we need
to translate the λβη-equality to a suitable equality theory based on Martin
Löf’s type theory. We obtain:

Definition 1.6 The equality theory of Martin Löf ’s type theory has the fol-
lowing basic proof rules for the Π-type:

N : A

[x : A]

M : B(β)
(λx.M)N = M [N/x] : B[N/x]

[x : A]

M = M ′ : B(ξ)
λx.M = λx.M ′ : Π(x:A)B

M : A(ρ)
M = M : A

M = M ′ : A N : Π(x:A)B
(µ)

NM = NM ′ : B[M/x]
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M = N : A(σ)
N = M : A

N : A M = M ′ : Π(x:A)B
(ν)

MN = M ′N : B[N/x]

M = N : A N = P : A(τ)
M = P : A

M : Π(x:A)B
(η) (x /∈ FV (M))

(λx.Mx) = M : Π(x:A)B

We are finally able to formally define computational paths:

Definition 1.7 Let a and b be elements of a type A. Then, a computational
path s from a to b is a composition of rewrites (each rewrite is an application
of the inference rules of the equality theory of type theory or is a change of
bound variables). We denote that by a =s b.

As we have seen in example 1.5, composition of rewrites are applications of
the rule τ . Since change of bound variables is possible, each term is considered
up to α-equivalence.

2 Identity Type

In this section, we have two main objectives. The first one is to propose a
formalization to the identity type using computational paths. The second ob-
jective is to show how can one use our approach to construct types representing
reflexivity, transitivity and symmetry. In the case of the transitive type, we
also compare our approach with the traditional one, i.e., Martin-Löf’s Inten-
sional type. With this comparison, we hope to show the clear advantage of our
approach, in terms of simplicity. Since our approach is based on computational
paths, we will sometimes refer to our formulation as the path-based approach
and the traditional formulation as the pathless approach. By this we mean
that, even though the homotopy type theory approach to the identity type
brings about the notion of paths in the semantics, there is little in the way of
handling paths as terms in the language of type theory.

Before the deductions that build the path-based identity type, we would
like to make clear that we will use the following construction of the traditional
approach [10]:

A type a : A b : A
Id− F

IdA(a, b) type

a : A
Id− I

r(a) : IdA(a, a)
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a : A b : A c : IdA(a, b)

[x : A]

q(x) : C(x, x, r(x))

[x : A, y : A, z : IdA(x, y)]

C(x, y, z) type
Id− E

J(p, q) : C(a, b, c)

2.1 Path-based construction

The best way to define any formal entity of type theory is by a set of natural
deductions rules. Thus, we define our path-based approach as the following set
of rules:

• Formation and Introduction rules:

A type a : A b : A
Id− F

IdA(a, b) type

a =s b : A
Id− I

s(a, b) : IdA(a, b)

• Elimination rule:

m : IdA(a, b)

[a =g b : A]

h(g) : C
Id− E

REWR(m, ǵ.h(g)) : C

• Reduction rules:

a =m b : A
Id− I

m(a, b) : IdA(a, b)

[a =g b : A]

h(g) : C
Id− E Bβ

REWR(m, ǵ.h(g)) : C
[a =m b : A]

h(m/g) : C

e : IdA(a, b)

[a =t b : A]
Id− I

t(a, b) : IdA(a, b)
Id− E Bη e : IdA(a, b)

REWR(e, t́.t(a, b)) : IdA(a, b)
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In these rules, ǵ (and t́) to indicate that they are abstractions over the
variable g (or t), for which the main rules of conversion of λ-abstraction hold.
For that reason, we proposed two reduction rules that handle these conversions,
the β and η reduction rules.

Our introduction and elimination rules reassures the concept of equality as
an existential force. In the introduction rule, we encapsulate the idea that
an witness of a identity type IdA(a, b) only exists if there exist a computational
path establishing the equality of a and b. Also, the elimination rule is similar
to the elimination rule of the existential quantifier. If we have an witness for
IdA(a, b), and if from a computational path between a and b we can construct
a term of type C, then we can eliminate the identity type, obtaining a term of
type C.

3 A Term Rewriting System for Paths

As we have just shown, a computational path establishes when two terms of the
same type are equal. From the theory of computational paths, an interesting
case arises. Suppose we have a path s that establishes that a =s b : A and a
path t that establishes that a =t b : A. Consider that s and t are formed by
distinct compositions of rewrites. Is it possible to conclude that there are cases
that s and t should be considered equivalent? The answer is yes. Consider the
following example:

Example 3.1 Consider the path a =t b : A. By the symmetric property, we
obtain b =σ(t) a : A. What if we apply the property again on the path σ(t)?
We would obtain a path a =σ(σ(t)) b : A. Since we applied symmetry twice
in succession, we obtained a path that is equivalent to the initial path t. For
that reason, we conclude the act of applying symmetry twice in succession is
a redundancy. We say that the path σ(σ(t)) can be reduced to the path t.

As one could see in the aforementioned example, different paths should be
considered equal if one is just a redundant form of the other. The example that
we have just seen is just a straightforward and simple case. Since the equality
theory has a total of 7 axioms, the possibility of combinations that could gen-
erate redundancies is high. Fortunately, most redundancies were thoroughly
mapped by [2]. In this work, a system that establishes redundancies and creates
rules that solve them was proposed. This system, known as LNDEQ − TRS,
mapped a total of 39 rules that solve redundancies. These 39 rules can be
checked in Appendix B. For each rule, there is a proof tree that constructs
it. All proof trees can be checked in [7]. In the case of example 3, we have the
following [7]:
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x =t y : A

y =σ(t) x : A
Bss x =t y : A

x =σ(σ(t)) y : A

It is important to notice that we assign a label to every rule. In the previous
case, we assigned the label ss.

Definition 3.2 An rw-rule is any of the rules defined in LNDEQ − TRS.

Definition 3.3 Let s and t be computational paths. We say that sB1rw t (read
as: s rw-contracts to t) iff we can obtain t from s by an application of only
one rw-rule. If s can be reduced to t by finite number of rw-contractions, then
we say that sBrw t (read as s rw-reduces to t).

Definition 3.4 Let s and t be computational paths. We say that s =rw t
(read as: s is rw-equal to t) iff t can be obtained from s by a finite (perhaps
empty) series of rw-contractions and reversed rw-contractions. In other words,
s =rw t iff there exists a sequence R0, ...., Rn, with n ≥ 0, such that

(∀i ≤ n− 1)(Ri B1rw Ri+1 or Ri+1 B1rw Ri)
R0 ≡ s, Rn ≡ t

Proposition 3.5 is transitive, symmetric and reflexive.

Proof. Comes directly from the fact that rw-equality is the transitive, re-
flexive and symmetric closure of rw. �

We’d like to mention that LNDEQ − TRS is terminating and confluent.
The proof of this affirmation can be found in [2, 4, 3, 6].

Thus, we conclude our review of computational paths as terms of the iden-
tity type and the associated rewrite system. If necessary, please check [7] and
[15] for a thorough development of this theory.

4 Homotopy Type Theory

In the previous sections, we have said that one of the most interesting concepts
of type theory is the identity type. We have also said that the reason for that
is the fact one can see the identity type as a homotopical path between two
points of a space, giving rise to a homotopical interpretation of type theory.
The connection between those two theories created a whole new area of research
known as homotopy type theory. In this work, we introduced computational
paths as the syntactic counterpart of those homotopical paths, since they only



Explicit Computational Paths 449

exist in a semantical sense. Nevertheless, we have not talked yet how one can
use computational paths in homotopy type theory. Thus, in this section, we
develop the main objective of this work.

We want to show that some of the foundational definitions, propositions
and theorems of homotopy type theory still hold in our path-based approach.
In other words, we use our approach to construct the building blocks of more
complex results.

One important fact to notice is that every proof that does not involve the
identity type is valid in the path-based approach. This is obvious, since the
only difference between the traditional approach and ours is the formulation of
the identity type. If a proof uses it, we need to reformulate this proof using our
path-based approach, instead of using the induction principle of the traditional
one. Thus, every part of a proof that is not directly or indirectly related to
identity type is still valid in our approach.

In a path-based proof, we are going to use the formulation proposed in the
previous sections. We also are going to use the reduction rules of LNDEQ −
TRS. In the process of developing the theory of this section, we noticed that
LNDEQ − TRS, as proposed in the previous section is still incomplete. We
state this based on the fact that we found new reduction rules that are not
part of the original LNDEQ − TRS. That way, we added these new rules to
the system, expanding it.

4.1 Groupoid Laws

In our previous work [15], we have seen that computational paths form a
groupoid structure. Let’s check again those rules using our REWR constructor
directly:

Lemma 4.1 The type Π(a:A)IdA(a, a) is inhabited.

Proof. We construct an witness for the desired type:

[a : A]

a =ρ a : A
Id− I1

ρ(a, a) : IdA(a, a)
Π− I

λa.ρ(a, a) : Π(a:A)IdA(a, a)

�

Lemma 4.2 The type Π(a:A)Π(b:A)(IdA(a, b)→ IdA(b, a)) is inhabited.
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Proof. Similar to the previous lemma, we construct an witness:

[a : A] [b : A]

[p(a, b) : IdA(a, b)]

[a =t b : A]

b =σ(t) a : A
Id− I

(σ(t))(b, a) : IdA(b, a)
Id− E

REWR(p(a, b), t́.(σ(t))(b, a)) : IdA(b, a)
Π− I

λp.REWR(p(a, b), t́.(σ(t))(b, a)) : IdA(a, b)→ IdA(b, a)
Π− I

λb.λp.REWR(p(a, b), t́.(σ(t))(b, a)) : Π(b:A)(IdA(a, b)→ IdA(b, a))
Π− I

λa.λb.λp.REWR(p(a, b), t́.(σ(t))(b, a)) : Π(a:A)Π(b:A)(IdA(a, b)→ IdA(b, a))

�

Lemma 4.3 The type Π(a:A)Π(b:A)Π(c:A)(IdA(a, b) → IdA(b, c) → IdA(a, c))
is inhabited.

Proof. We construct the witness in Figure 4.1.
�
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Figure 1: Lemma’s 4.3 inhabitant
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Lemmas 1, 2 and 3 correspond respectively to the reflexivity, symmetry
and transitivity of the identity type. From now on, the reflexivity will be
represented by ρ, symmetry by σ and transitivity by τ .

Lemma 4.4 For any type A, x, y, z, w : A and p : IdA(x, y) and q : IdA(y, z)
and r : IdA(z, w), the following types are inhabited:

1. Π(x,y:A)Π(p:IdA(x,y))IdIdA(x,y)(p, ρy ◦ p) and
Π(x,y:A)Π(p:IdA(x,y))IdIdA(x,y)(p, p ◦ ρx).

2. Π(x,y:A)Π(p:IdA(x,y))IdIdA(x,y)(σ(p) ◦ p, ρx) and
Π(x,y:A)Π(p:IdA(x,y))IdIdA(x,y)(p ◦ σ(p), ρy)

3. Π(x,y:A)Π(p:IdA(x,y))IdIdA(x,y)(σ(σ(p)), p)

4. Π(x,y,z,w:A)Π(p:IdA(x,y))Π(q:IdA(y,z))Π(r:IdA(z,w))IdIdA(x,w)(r ◦ (q ◦ p), (r ◦ q) ◦ p)

Proof. The proof of each statement follows from the same idea. We just need
to look for suitable reduction rules already present in the original LNDEQ −
TRS.

1. The first thing to notice is that a composition in our path-based approach
corresponds to a transitive operation, i.e., (p ◦ ρx) can be written as
τ(ρx, p) Follows from rules number 5 and 6. These are as follows:

x =r y : A y =ρ y : A
Btrr x =r y : A

x =τ(r,ρ) y : A

x =ρ x : A x =r y : A
Btlr x =r y : A

x =τ(ρ,r) y : A

Thus, we have:

τ(p, ρy) =trr p : IdA(x, y)

(trr)(τ(p, ρy), p) : IdIdA(x,y)(p, ρy ◦ p)
λx.λy.λp.(trr)(τ(p, ρy), p) : Π(x,y:A)Π(p:IdA(x,y))IdIdA(x,y)(p, ρy ◦ p)
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τ(ρx, p) =tlr p : IdA(x, y)

(tlr)(τ(ρx, p), p) : IdIdA(x,y)(p, p ◦ ρx)

λx.λy.λp.(tlr)(τ(ρx, p), p) : Π(x,y:A)Π(p:IdA(x,y))IdIdA(x,y)(p, p ◦ ρx)

2. We use rules 3 and 4:

x =r y : A y =σ(r) x : A
Btr x =ρ x : A

x =τ(r,σ(r)) x : A

y =σ(r) x : A x =r y : A
Btsr y =ρ y : A

y =τ(σ(r),r) y : A

Thus:

τ(p, σ(p)) =tr ρx : IdA(x, y)

(tr)(τ(p, σ(p)), ρx) : IdIdA(x,y)(σ(p) ◦ p, ρx)

λx.λy.λp.(tr)(τ(p, σ(p), ρx) : Π(x,y:A)Π(p:IdA(x,y))IdIdA(x,y)(σ(p) ◦ p, ρx)

τ(σ(p), p) =tsr ρy : IdA(x, y)

(tsr)(τ(σ(p), p), ρy) : IdIdA(x,y)(p ◦ σ(p), ρy)

λx.λy.λp.(tsr)(τ(p, σ(p), ρy) : Π(x,y:A)Π(p:IdA(x,y))IdIdA(x,y)(p ◦ σ(p), ρy)

3. We use rule 2:

x =r y : A

y =σ(r) x : A
Bss x =r y : A

x =σ(σ(r)) y : A

Thus:
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σ(σ(p)) =ss p : IdA(x, y)

(ss)(σ(σ(p), p)) : IdIdA(x,y)(σ(σ(p)), p)

λx.λy.λp.(ss)(σ(σ(p), p)) : Π(x,y:A)Π(p:IdA(x,y))IdIdA(x,y)(σ(σ(p)), p)

4. We use rule 37:

x =t y : A y =r w : A

x =τ(t,r) w : A w =s z : A

x =τ(τ(t,r),s) z : A

x =t y : A

y =r w : A w =s z : A

y =τ(r,s) z : A
Btt

x =τ(t,τ(r,s)) z : A

Thus:

τ(τ(p, q), r) =tt τ(p, τ(q, r)) : IdA(x,w)

(tt)(τ(τ(p, q), r) =tt τ(p, τ(q, r))) : IdIdA(x,w)(r ◦ (q ◦ p), (r ◦ q) ◦ p)
M : Π(p:IdA(x,y))Π(q:IdA(y,z))Π(r:IdA(z,w))IdIdA(x,w)(r ◦ (q ◦ p), (r ◦ q) ◦ p)

where M = λx.λy.λz.λw.λp.λq.λr.(ss)(σ(σ(p), p))

�

With the previous lemma, we showed that our path-based approach yields
the groupoid structure of a type up to propositional equality.

4.2 Functoriality

We want to show that functions preserve equality[16].

Lemma 4.5 The type Π(x,y:A)Π(f :A→B)(IdA(x, y) → IdB(f(x), f(y))) is in-
habited.

Proof. It is a straightforward construction:
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[x =s y : A] [f : A→ B]

f(x) =µf (s) f(y) : B

µf (s)(f(x), f(y)) : IdB(f(x), f(y)) [p : IdA(x, y)]

REWR(p, λs.µf (s)(f(x), f(y))) : IdB(f(x), f(y))

M : Π(x,y:A)Π(f :A→B)(IdA(x, y)→ IdB(f(x), f(y)))

where M = λx.λy.λf.λp.REWR(p, λs.µf (s)(f(x), f(y))) �

Lemma 4.6 For any functions f : A→ B and g : B → C and paths p : x =A y
and q : y =A z, we have:

1. µf (τ(p, q)) = τ(µf (p), µf (q))

2. µf (σ(p)) = σ(µf (p))

3. µg(µf (p)) = µg◦f (p)

4. µIdA(p) = p

Proof.

1. For the first time, we need to add a new rule to the original 39 rules of
LNDEQ − TRS. We introduce rule 40:

x =p y : A [f : A→ B]

f(x) =µf (p) f(y) : B

y =q z : A [f : A→ B]

f(y) =µf (q) f(z) : B

f(x) = τ(µf (p), µf (q))f(z) : B

x =p y : A y =q z : A
Btf

x =τ(p,q) z : A f : A→ B

f(x) =µf (τ(p,q)) f(z) : B

Thus, we have µf (τ(p, q)) =σ(tf) τ(µf (p), µf (q))

2. This one follows from rule 30:
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x =p y : A [f : A→ B]

f(x) =µf (p) f(y) : B

f(y) =σ(µf (p)) f(x) : B

x =p y : A
Bsm

y =σ(p) x : A [f : A→ B]

f(y) =µf (σ(p)) f(x) : B

We have µf (σ(p)) =σ(sm) σ(µf (p))

3. We introduce rule 41:

x =p y : A [f : A→ B]

f(x) =µf (p) f(y) : B [g : B → C]

g(f(x)) =µg(µf (p)) g(f(y)) : C

x =p y : A

[x : A] [f : A→ B]

f(x) : B [g : B → C]

g(f(x)) : C

λx.g(f(x)) ≡ (g ◦ f) : A→ C
Bcf

g(f(x)) =µg◦f (p) g(f(y)) : C

Then, µg(µf (p)) =cf µg◦f (p)

4. We introduce rule 42:

x =p y : A [IdA : A→ A]

IdA(x) = µIdA(p)IdA(y) : A
Bci x =p y : A

x =µIdA (p) y : A

It follows that µIdA(p) =ci p

�
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4.3 Transport

As stated in [5], substitution can take place when no quantifier is involved. In
this sense, there is a ’quantifier-less’ notion of substitution. In type theory, this
’quantifier-less’ substitution is given by a operation known as transport [16]. In
our path-based approach, we formulate a new inference rule of ’quantifier-less’
substitution [5]:

x =p y : A f(x) : P (x)

p(x, y) ◦ f(x) : P (y)

We use this transport operation to solve one essential issue of our path-
based approach. We know that given a path x =p y : A and function f :
A → B, the application of axiom µ yields the path f(x) =µf (p) f(y) : B. The
problem arises when we try to apply the same axiom for a dependent function
f : Π(x:A)P (x). In that case, we want f(x) = f(y), but we cannot guarantee
that the type of f(x) : P (x) is the same as f(y) : P (y). The solution is to
apply the transport operation and thus, we can guarantee that the types are
the same:

x =p y : A f : Π(x:A)P (x)

p(x, y) ◦ f(x) =µf (p) f(y) : P (y)

Lemma 4.7 (Leibniz’s Law) The type Π(x,y:A)(IdA(x, y) → P (x) → P (y)) is
inhabited.

Proof. We construct the following tree:

[x =p y : A] [f(x) : P (x)]

p(x, y) ◦ f(x) : P (y)

λf(x).p(x, y) ◦ f(x) : P (x)→ P (y) [z : IdA(x, y)]

REWR(z, λp.λf(x).p(x, y) ◦ f(x)) : P (x)→ P (y)

M : Π(x,y:A)(IdA(x, y)→ P (x)→ P (y))
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where M = λx.λy.λz.REWR(z, λp.λf(x).p(x, y) ◦ f(x)) �

The function λf(x).p(x, y) ◦ f(x) : P (x) → P (y) is usually written as
transportp(p,−) and transportp(p, f(x)) : P (y) is usually written as p∗(f(x)).

Lemma 4.8 For any P (x) ≡ B, x =p y : A and b : B, there is a path
transportP (p, b) = b.

Proof. The first to notice is the fact that in our formulation of transport,
we always need a functional expression f(x), and in this case we have only a
constant term b. To address this problem, we consider a function f = λ.b and
then, we transport over f(x) ≡ b:

transportP (p, f(x) ≡ b) =µ(p) (f(y) ≡ b).

Thus, transportP (p, b) =µ(p) b. We may call this path transportconstBp (b).
�

Lemma 4.9 For any f : A→ B and x =p y : A, we have

µ(p)(p∗(f(x)), f(y)) = τ(transportconstBp , µf (p))(p∗(f(x)), f(y))

Proof. The first thing to notice is that in this case, transportconstBp is the
path µ(p)(p ∗ (f(x), f(x)) by Lemma 8. As we did to the rules of LNDEQ −
TRS, we establishes this equality by getting to the same conclusion from the
same premises by two different trees:

In the first tree, we consider f(x) ≡ b : B and transport over b : B:

x =p y : A f(x) ≡ b : B

p(x, y) ◦ (f(x) ≡ b) : B

p∗(f(x)) =µf (p) b ≡ f(x)

x =p y : A f : A→ B

f(x) =µf (p) f(y) : B

p∗(f(x)) =τ(µf (p),µf (p)) f(y) : B

In the second one, we consider f(x) as an usual functional expression and
thus, we transport the usual way:
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x =p y : A f(x) : B

p(x, y) ◦ f(x) : B

p∗(f(x)) =µf (p) f(y) : B

�

Lemma 4.10 For any x =p y : A and q : y =A z : A, f(x) : P (x), we have

q∗(p∗(f(x))) = (p ◦ q)∗(f(x))

Proof. We develop both sides of the equation and wind up with the same
result:

q∗(p∗f(x)) =µ(p) q∗(f(y)) =µ(q) f(z)
(p ◦ q)∗(f(x)) =µ(p◦q) f(z)

�

Lemma 4.11 For any f : A→ B, x =p y : A and u : P (f(x)), we have:

transportP◦f (p, u) = transportP (µf (p), u)

Proof. This lemma hinges on the fact that there is two possible interpreta-
tions of u that stems from the fact that (g ◦ f)(x) ≡ g(f(x)). Thus, we can see
u as functional expression g on f(x) or an expression g ◦ f on x (cf. Figure 2).

�
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Figure 2: Statement Lemma 4.11
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Lemma 4.12 For any f : Π(x:A)P (x) → Q(x), x =p y : A and u(x) : P (x),
we have:

transportQ(p, f(u(x))) = f(transportP (p, u(x)))

Proof. We proceed the usual way, constructing a derivation tree that estab-
lishes the equality:

x =p y : A f(u(x)) : Q(x)

p(x, y) ◦ f(u(x)) : Q(y)

p(x, y) ◦ f(u(x)) =µ(p) f(u(y)) : Q(y)
D

f(u(y)) =σ(µf (µ(p))) f(p(x, y) ◦ u(x)) : Q(y)

p(x, y) ◦ f(u(x)) =τ(µ(p),σ(µf (µ(p)))) f(p(x, y) ◦ u(x))

transportQ(p, f(u(x))) =τ(µ(p),σ(µf (µ(p)))) f(transportP (p, u(x)))

where D is

x =p y : A u(x) : P (x)

p(x, y) ◦ u(x) : P (y)

p(x, y) ◦ u(x) =µ(p) u(y) : P (y) f : Π(x:A)P (x)→ Q(x)

f(p(x, y) ◦ u(x)) =µf (µ(p)) f(u(y)) : Q(y)

f(u(y)) =σ(µf (µ(p))) f(p(x, y) ◦ u(x)) : Q(y)

�

4.4 Homotopies

In homotopy type theory, a homotopy is defined as follows [16]:

Definition 4.13 For any f, g : Π(x:A)P (x), a homotopy from f to g is a de-
pendent function of type:

(f ∼ g) ≡ Π(x:A)(f(x) = g(x))

In our path-based approach, we have a homotopy f, g : Π(x:A)P (x) if for
every x : A we have a computational path between f(x) = g(x). Thus, if we
have a homotopy Hf,g : f ∼ g, we derive the following rule:
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Hf,g : f ∼ g f, g : Π(x:A)P (x) x : A

f(x) =Hf,g(x) g(x) : P (x)

And:

f, g : Π(x:A)P (x) x : A

[f, g : Π(x:A)P (x), x : A]

f(x) =p g(x)

Hp
f,g : f ∼ g

Lemma 4.14 For any f, g, h : A→ B, the following types are inhabited:

1. f ∼ f

2. (f ∼ g)→ (g ∼ f)

3. (f ∼ g)→ (g ∼ h)→ (f ∼ h)

Proof.

1. We construct the following term:

f : A→ B x : A

[x : A]
x =ρ x [f : A→ B]

f(x) =µf (ρ) f(x) : B

H
µf (ρ)
f,f : f ∼ f

2. We construct:

f, g : A→ B x : A

[Hf,g : f ∼ g] [f, g : A→ B] [x : A]

f(x) =Hf,g(x) g(x) : B

g(x) =σ(Hf,g(x)) f(x) : B

H
σ(Hf,g(x))
g,f : g ∼ f

λHf,g.H
σ(Hf,g(x))
g,f : (f ∼ g)→ (g ∼ f)
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3. We construct:

f, h : A→ B x : A
D

f(x) =τ(Hf,g(x),Hg,z(x)) h(x) : B

H
τ(Hf,g(x),Hg,z(x))
f,h : f ∼ h

λHf,g.λHg,h.H
τ(Hf,g(x),Hg,z(x))
f,h : (f ∼ g)→ (g ∼ h)→ (f ∼ h)

where D is

[Hf,g : f ∼ g] [f, g : A→ B] [x : A]

f(x) =Hf,g(x) g(x) : B

[Hg,h : g ∼ h] [g, h : A→ B] [x : A]

g(x) =Hg,h(x) h(x) : B

f(x) =τ(Hf,g(x),Hg,z(x)) h(x) : B

�

Lemma 4.15 For any Hf,g : f ∼ g and functions f, g : A → B and a path
x =p y : A we have:

τ(Hf,g(x), µg(p)) = τ(µf (p), Hf,g(y))

Proof.
To establish this equality, we need to add a new rule to our LNDEQ−TRS.

We introduce rule 43:

Hf,g : f ∼ g x : A f, g : A→ B

f(x) =Hf,g(x) g(x) : B

x =p y : A

g(x) =µg(p) g(y) : B

f(x) =τ(Hf,g(x),µg(p)) g(y) : B

Bhp

x =p y : A

f(x) =µf (p) f(y) : B

Hf,g : f ∼ g x : A f, g : A→ B

f(y) =Hf,g(y) g(y) : B

f(x) =τ(µf (p),Hf,g(y) g(y) : B
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And thus:
τ(Hf,g(x), µg(p)) =hp τ(µf (p), Hf,g(y))

�

After this section, we start to study specific lemmas and theorems involv-
ing basic types of type theory. Nevertheless, several of those theorems are
statements about the notion of equivalence (notation: '). Before we define
equivalence, we need the following definition [16]:

Definition 4.16 A quasi-inverse of a function f : A→ B is a triple (g, α, β)
such that g is a function g : B → A and α and β are homotopies such that
α : f ◦ g ∼ IdB and β : g ◦ f ∼ IdA

A quasi-inverse of f is usually written as qinv(f).

Definition 4.17 A function f : A → B is an equivalence if there is a quasi-
inverse qinv(f) : B → A.

4.5 Cartesian Product

We start proving some important lemmas and theorems for the Cartesian prod-
uct type. As we did in previous subsections, we proceed using our path-based
approach. Before we prove our first theorem, it is important to remember
that given a term x : A × B, we can extract two projections, FST (x) : A
and SND(x) : B. Thus, given a path x =p y : A × B, we extract paths
FST (x) = SND(y) : A and SND(x) = SND(y) : B.

Theorem 4.18 The function (x =p y : A × B) → (FST (x) = FST (y) :
A)× (SND(x) = SND(y) : B) is an equivalence for any x and y.

Proof. To show the equivalence, we need to show the following

1. From x =p y : A × B we want to obtain (FST (x) = FST (y) : A) ×
(SND(x) = SND(y) : B) and from that, we want to go back to x =p y :
A×B.

2. We want to do the inverse process. From (FST (x) = FST (y) : A) ×
(SND(x) = SND(y) : B) we want to obtain x =p y : A×B and then go
back to (FST (x) = FST (y) : A)× (SND(x) = SND(y) : B).

To show the first part, we need rule 21:
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x =p y : A×B
FST (x) =µ1(p) FST (y) : A

x =p y : A×B
SND(x) =µ2(p) SND(y) : B

〈FST (x), SND(x)〉 =ε(µ1(p),µ2(p)) 〈FST (y), SND(y)〉 : A×B

Bmx x =p y : A×B.

Thus, applying rule mx we showed the first part of our proof. For the
second part, we need rules 14 and 15:

x =r x
′ : A y =s z : B

〈x, y〉 =ε∧(r,s) 〈x′, z〉 : A×B
FST (〈x, y〉) =µ1(ε∧(r,s)) FST (〈x′, z〉) : A

Bmx2l x =r x
′ : A.

And:

x =r y : A z =s w : B

〈x, z〉 =ε∧(r,s) 〈y, w〉 : A×B
FST (〈x, z〉) =µ2(ε∧(r,s)) FST (〈y, w〉) : B

Bmx2r z =s w : B.

We also use the η-reduction for the Cartesian product:

〈FST (x), SND(x)〉 : A×B Bη x : A×B

We construct the following derivation tree:

〈FST (x) =s FST (y), SND(x) =t SND(y)〉
FST (x) =s FST (y) : A

〈FST (x) =s FST (y), SND(x) =t SND(y)〉
SND(x) =t SND(y) : B

〈FST (x), SND(x)〉 =ε∧(s,t) 〈FST (y), SND(y)〉 : A×B
Bη

x =ε(s,t) y : A×B

From x =ε(s,t) y : A×B, we have:
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x =ε(s,t) y : A×B
FST (x) =µ1(ε∧(s,t) FST (y) : A

x =ε(s,t) y : A×B
SND(x) =µ2(ε∧(s,t) SND(y) : B

∧ − I〈FST (x) =µ1(ε∧(s,t) FST (y), SND(x) =µ2(ε∧(s,t) SND(y)〉
Bmx2l,mx2r〈FST (x) =s FST (y), SND(x) =t SND(y)〉

Thus, we showed part 2 and concluded the proof of this theorem. �

Theorem 4.19 For any x, y : A × B, FST (x) =p FST (y) : A, SND(x) =q

SND(y) : B, functions g : A → A′, h : B → B′ and f : A × B → A′ × B′
defined by f(x) ≡ 〈g(FST (x)), h(SND(x)〉, we have:

µf (ε∧(p, q)) = ε∧(µg(p), µh(q))

Proof. We introduce rule 44:

FST (x) =p FST (y) : A SND(x) =q SND(y) : B

〈FST (x), SND(x)〉 =ε∧(p,q) 〈FST (y), SND(y)〉 : A×B
=η

x =ε∧(p,q) y : A×B
f(x) =µf (ε∧(p,q)) f(y) : A′ ×B′

Bmxc

FST (x) =p FST (y) : A

g(FST (x)) =µg(p) g(FST (y)) : A′
SND(x) =q SND(y) : B

h(SND(x)) =µh(q) h(SND(y)) : B′

〈g(FST (x), h(SND(x))〉 =ε∧(µg(p),µh(q)) 〈g(FST (y)), h(SND(y))〉 : A′ ×B′

f(x) =ε∧(µg(p),µh(q)) f(y) : A′ ×B′

And thus:

µf (ε∧(p, q)) =mxc ε∧(µg(p), µh(q))

�
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4.6 Unit Type

For the unit type 1, our objective is to show the following theorem:

Theorem 4.20 For any x, y : 1, there is a path t such that x =t y. Moreover,
t = ρ.

Proof. To show that there is such t, we need to use the induction for the
unit type [16]:

∗Bη x : 1

Therefore, given x, y : 1, we have:

x =σ(η) ∗ : 1 ∗ =η y : 1

x =τ(σ(η),η) y : 1

Moreover, by rule 4, we have:

τ(σ(η), η) =tsr ρ.

Thus, t ≡ τ(σ(η), η) and t =tsr ρ. �

4.7 Univalence Axiom

The first thing to notice is that in our approach the following lemma holds:

Lemma 4.21 For any types A and B, the following function exists:

idtoeqv : (A = B)→ (A ' B)

Proof. The idea of the proof is similar to the one shown in [16]. We define
idtoeqv to be p∗ : A→ B. Thus, to end this proof, we just need to show that
p∗ is an equivalence.

For any path p, we can form a path σ(p) and thus, we have (σ(p))∗ : B → A.
Now, we show that (σ(p)))∗ is a quasi-inverse of p∗.

We need to check that:

1. p∗((σ(p)∗(b)) = b

2. (σ(p))∗(p∗(a)) = a

Both equations can be shown by an application of Lemma 4.10:
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1. p∗((σ(p)∗(b)) = (σ(p) ◦ p)∗(b) = τ(p, σ(p))∗(b) =tr ρ∗(b) =µ(p) b.

2. (σ(p))∗(p∗(a)) = (p ◦ σ(p))∗(a) = τ(σ(p), p)∗(a) =tsr ρ∗(a) =µ(p) a

�

We have shown that a function exists, but we did not show that it is an
equivalence. In fact, basic type theory cannot conclude that idtoeqv is an
equivalence[16]. If we want this equivalence to be a property of our system,
we must add a new axiom. This axiom is known as Voevodsky’s univalence
axiom[16]:

Axiom 4.22 For any types A,B, idtoeqv is an equivalence, i.e., we have:

(A = B) ' (A ' B)

4.8 Identity Type

In this section, we investigate specific lemmas and theorems related to the
identity type. We start with the following theorem:

Theorem 4.23 if f : A→ B is an equivalence, then for x, y : A we have:

µf : (x = y : A)→ (f(x) = f(y) : B)

Proof. We will omit the specific details of this proof, since it is equal to the
one of Theorem 2.11.1 presented in [16]. This is the case because this proof
is independent of the usage of the induction principle of the identity type. The
only difference is that at some steps we need to cancel inverse paths. In our
approach, this is done by straightforward applications of rules 3,4,5 and 6.
�

Lemma 4.24 For any a : A, with x1 =p x2

1. transportx→(a=x)(p, q(x1)) = τ(q(x1), p), for q(x1) : a = x1

2. transportx→(x=a)(p, q(x1)) = τ(σ(p), q(x1), for q(x1) : x1 = a

3. transportx→(x=x)(p, q(x1)) = τ(σ(p), τ(q(x1), p)) for q(x1) : x1 = x1

Proof.

1. We start establishing the following reduction:
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a =q(x1) x1 x1 =p x2 B a =q(x2) x2a =τ(q(x1,p)) x2

Thus, we just need to show that transportx→(a=x)(p, q(x1)) also reduces
to a =q(x(2)) x2:

x1 =p x2 q(x1) : a = x1
=µ(p) (a =q(x2) x2)p(x1, x2) ◦ q(x1) : a = x2

2. We use the same idea:

x2 =σ(p) x1 x1 =q(x1) a B x2 =q(x2) ax2 =τ(σ(p),q(x1)) a

x1 =p x2 q(x1) : x1 = a
=µ(p) (x2 =q(x2) a)

p(x1, x2) ◦ q(x1) : x2 = a

3. Same as the previous cases:

x2 =σ(p) x1 x1 =q(x1) x1
x2 =τ(σ(p),q(x1)) x1 x1 =p x2 B x2 =q(x2) x2x2 =τ(τ(σ(p),q(x1)),p) x2

x1 =p x2 q(x1) : x1 = x1
=µ(p) (x2 =q(x2) x2)p(x1, x2) ◦ q(x1) : x2 = x2

�
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4.9 Coproduct

One essential thing to remember is that a product A + B has a left injection
inl : A → A + B and inr : B → A + B. As described in [16], it is expected
that A+B contains copies of A and B disjointly. In our path based approach,
we achieve this by constructing every path inl(a) = inl(b) and inr(a) = inr(b)
by applications of axiom µ on paths a = b. Thus we show that we get the
following equivalences:

1. (inl(a1) = inl(a2)) ' (a1 = a2)

2. (inr(b1) = inr(b2)) ' (b1 = b2)

3. (inl(a) = inr(b)) ' 0

To prove this, we use the same idea as in [16]. We characterize the type:

(x→ (inl(a0) = x)) : Π(x:A+B)(inl(a0 = x))

To do this, we define a type code:

x : A+B ` code(x) type

Our main objective is to prove the equivalence Π(x:A+B)((inl(a0) = x) '
code(x)). Using the recursion principle of the coproduct, we can define code
by two equations:

code(inl(a)) ≡ (a0 = a)
code(inr(b)) ≡ 0

Theorem 4.25 For any x : A+B, we have inl(a0 = x) ' code(x)

Proof. To show this equivalence, we use the same method as the one shown
in [16]. The main idea is to define functions

encode : Π(x:A+B)Π(p:inl(a0)=x)code(x)
decode : Π(x:A+B)Π(c:code(x))(inl(a0) = x))

such that decode acts as a quasi-inverse of encode.
We start defining encode:

encode(x, s) ≡ transportcode(s, ρa0)
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We notice that ρa0 : code(inl(a0)), since code(inl(a0)) ≡ (a0 =ρ a0) We
also notice that for encode, it is only possible for the argument x to be of the
form x ≡ inl(a), since the other possibility is x ≡ inr(a), but that case is not
possible, because we would have a function to code(inr(b)) ≡ 0.

For decode, when x ≡ inl(a), we have that code(x) ≡ a0 =c a and thus, we
define decode as (inl(a0) =µ(c) inl(a)). When x ≡ inr(a), then code(x) ≡ 0
and thus, we define decode as having any value, given by the elimination of the
type 0. Now, we can finally prove the equivalence.

Starting with encode, we have x ≡ inl(a), inl(a0) =s x. Since
encode(x, s) ≡ transportcode(s, ρa0), we have:

inl(a0) =s inl(a) ρa0 : code(inl(a0))

s(inl(a0), inl(a)) ◦ ρa0 : code(inl(a)) =µ(s)
ρa : code(inl(a)) ≡ code(x)

Now, we can go back to inl(a0) = inl(a) by an application of decode, since:

decode(ρa : code(x)) ≡ inl(a0) =µinl inl(a)

And we conclude this part, since in our approach inl(a0) =s inl(a) is con-
structed by applications of axiom µ.

Now, we start from decode. Let c : code(x). If x ≡ inl(a), then c : a0 = a
and thus, decode(c) ≡ inl(a0) =µ(c) inl(a). Now, we apply encode. We have:

encode(x, µc) = transportcode(µc, ρa0)
= transporta→(a0=a)(c, ρa0) (Lemma 4.11)
= τ(ρa0 , c) (Lemma 4.24)
= c (Rule 6)

If x ≡ inr(b), we have that c : 0 and thus, as stated in [16], we can conclude
anything we wish.

�

4.10 Reflexivity

In this section, our objective is to conclude an important result related to the
reflexive path ρ:

Theorem 4.26 For any type A and a path x =ρ x : A, if a path s is obtained
by a series (perhaps empty) of applications of axioms and rules of inference of
λβη-equality theory for type theory to the path ρ, then there is a path t′ such
that s =t′ ρ.
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Proof.

• Base Case:

We can start only with a path x =ρ. In that case, it is easy, since we
have ρ =ρ ρ.

Now, we consider the inductive steps. Starting from a path s and applying
τ , σ, we already have rules yield the desired path:

• s = σ(s′), with s′ =t′ ρ.

In this case, we have s = σ(s′) = σ(ρ) =sr ρ.

• s = τ(s′, s′′), with s′ =t′ ρ and s′′ =t′′ ρ.

We have that s = τ(s′, s′′) = τ(ρ, ρ) =trr ρ

The cases for applications of µ, ν and ξ remain to be proved. We intro-
duce three new rules that handle these cases.

• s = µ(s′), with s′ =t′ ρ.

We introduce rule 45:

x =ρx x : A [f : A→ B]
Bmxp f(x) =ρf(x) f(x) : B(x)

f(x) =µ(ρx) f(x) : B(x)

This rule is also valid for the dependent case:

x =ρx x : A [f : Π(x:A)B(x)]
Bmxp f(x) =ρf(x) f(x) : B(x)

p(x, x) ◦ f(x) =µ(ρx) f(x) : B(x)

Thus, we have s = µ(s′) = µ(ρ) =mxp ρ.

• s = ν(s′), with s′ =t′ ρ.

We introduce rule 46:

f =ρ f : Π(x:A)B(x)
Bnxp f(x) =ρf(x) f(x)

f(x) =ν(ρx) f(x) : B(x)
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Thus, s = ν(s′) = ν(ρ) =nxp ρ.

• s = ξ(s′), with s′ =t′ ρ.

We introduce rule 47:

b(x) =ρ b(x) : B x : A
Bxxp λx.b(x) =ρ λx.b(x)

λx.b(x) =ξ(ρ) λx.b(x) : A→ B

Thus, s = ξ(s′) = ξ(ρ) =xxp ρ.

�

4.11 Natural Numbers

The Natural Numbers is a type defined inductively by an element 0 : N and
a function succ : N → N. In our approach, the path space of the naturals is
also characterized inductively. We start from the reflexive path 0 =ρ 0. All
subsequent paths are constructed by applications of the inference rules of λβη-
equality. We show that this characterization is similar to the one constructed
in [16]. To do this, we use code, encode and decode. For N, we define code
recursively [16]:

code(0, 0) ≡ 1
code(succ(m), 0) ≡ 0
code(0, succ(m)) ≡ 0

code(succ(m), succ(n)) ≡ code(m,n)

We also define a dependent function r : Π(n:N)code(m,n), with:

r(0) ≡ ∗
r(succ(n)) ≡ r(n)

Theorem 4.27 For any m,n : N, if there is a path m =t n : N, then tB ρ.

Proof. Since all paths are constructed from the reflexive path 0 =ρ 0, this is
a direct application of Theorem 4.26. �

Theorem 4.28 For any m,n : N, we have (m = n) ' code(m,n)
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Proof. We need to define encode and decode and prove that they are quasi-
inverses. We define encode : Π(m,n:N)(m = n)→ code(m,n) as:

encode(m,n, p) ≡ transportcode(m,−)(p, r(m))

We define decode : Π(m,n:N)code(m,n)→ (m = n) recursively:

decode(0, 0, c) ≡ 0 =ρ 0
decode(succ(m), 0, c) ≡ 0
decode(0, succ(m), c) ≡ 0)

decode(succ(m), succ(n), c) ≡ µsucc(decode(m,n, c))

We now prove that if m =p n, then decode(code(m,n)) = ρ. We prove
by induction. The base is trivial, since decode(0, 0, c) ≡ ρ. Now, consider
decode(succ(m), succ(n), c). We have that

decode(succ(m), succ(n), c) ≡ µsucc(decode(m,n, c))

By the inductive hypothesis, decode(m,n, c) ≡ ρ. Thus, we need to prove that
µsucc = ρ. This last step is a straightforward application of rule 47. Therefore,
µsucc =mxp ρ. With this information, we can start the proof of the equivalence.

For any m =p n, we have:

encode(m,n, p) ≡ transportcode(m,−)(p, r(m))

Thus:

m =p n r(m) : code(m,m)
=µ(p) (r(n) : code(m,n))

p(m,n) ◦ r(m) : code(m,n)

Now, we know that decode(r(n) : code(m,n)) = ρ and,by Theorem 4.27,
p = ρ.

The proof starting from a c : code(m,n) is equal to the one presented in
[16]. We prove by induction. If m and n are 0, we have the trivial path 0 =ρ 0,
thus decode(0, 0, c) = ρ0, whereas encode(0, 0, ρ0) ≡ r(0) ≡ ∗. We conclude
this part recalling that every x : 1 is equal to ∗, since we have x =σ(η) ∗ : 1. In
the case of decode(succ(m), 0, c) or decode(0, succ(n), c), c : 0. The only case
left is for decode(succ(m), succ(n), c). Similar to [16], we prove by induction:

encode(succ(m), succ(n), decode(succ(m), succ(n), c))
= encode(succ(m), succ(n), µsucc(decode(m,n, c))
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= transportcode(succ(m),−)(µsucc(decode(m,n, c)), r(succ(m))
= transportcode(succ(m),succ(−)(decode(m,n, c), r(succ(m)))
= transportcode(m,−)(decode(m,n, c), r(m))
= encode(m,n, decode(m,n, c))
= c �

4.12 Fundamental Group of a Circle

The objective of this section is to show that it is possible to use computational
paths to obtain one of the main results of homotopy theory, the fact that the
fundamental group of a circle is isomorphic to the integers group. First, we
define a circle as follows:

Definition 4.29 (The circle S1) A circle is the type generated by:

• A point base : S1

• A computational path base =loop base : S1.

The first thing one should notice is that this definition doest not use only
the points of the type S1, but also a computational path loop between those
points. That is way it is called a higher inductive type [16]. Our approach
differs from the classic one on the fact that we do not need to simulate the
path-space between those points, since computational paths exist in the syntax
of the theory. Thus, if one starts with a path base =loop base : S1., one can
naturally obtain additional paths applying the path-axioms ρ, τ and σ. Thus,
one has a path σ(loop) = loop−1, τ(loop, loop), etc. In classic type theory,
the existence of those additional paths comes from establishing that the paths
should be freely generated by the constructors [16]. In our approach, we do
not have to appeal for this kind of argument, since all paths comes naturally
from direct applications of the axioms.

With that in mind, one can define the fundamental group of a circle. In
homotopy theory, the fundamental group is the one formed by all equivalence
classes up to homotopy of paths (loops) starting from a point a and also ending
at a. Since the we use computational paths as the syntax counterpart in type
theory of homotopic paths, we use it to propose the following definition:

Definition 4.30 (Π1(A, a) structure) Π1(A, a) is a structure defined as fol-
lows:

Π1(A, a) = {[path]rw | a =path a : A}



476 A. Ramos, R. de Queiroz, A. de Oliveira and T. de Veras

We use this structure to define the fundamental group of a circle. We also
need to show that it is indeed a group.

Proposition 4.31 (Π1(S, a), ◦) is a group.

Proof. The first thing to define is the group operation ◦. Given any a =r a :
S1 and a =t a : S1, we define r ◦ s as τ(s, r). Thus, we now need to check the
group conditions:

• Closure: Given a =r a : S1 and a =t a : S1, r ◦ s must be a member of
the group. Indeed, r◦s = τ(s, r) is a computational path a =τ(s,r) a : S1.

• Inverse: Every member of the group must have an inverse. Indeed, if we
have a path r, we can apply σ(r). We claim that σ(r) is the inverse of r,
since we have:

σ(r) ◦ r = τ(r, σ(r)) =tr ρ

r ◦ σ(r) = τ(σ(r), r) =tsr ρ

Since we are working up to rw-equality, the equalities hold strictly.

• Identity: We use the path a =ρ a : S1 as the identity. Indeed, we have:

r ◦ ρ = τ(ρ, r) =tlr r

ρ ◦ r = τ(r, ρ) =trr r.

• Associativity: Given any members of the group a =r a : S1, a =t a and
a =s a, we want that r ◦ (s ◦ t) = (r ◦ s) ◦ t:

r ◦ (s ◦ t) = τ(τ(t, s), r) =tt τ(t, τ(s, r)) = (r ◦ s) ◦ t

All conditions have been satisfied. (Π1(S, a), ◦) is a group. �

Thus, (Π1(S, a), ◦) is indeed a group. We call this group the fundamental
group of S1. Therefore, the objective of this section is to show that Π1(S, a) ∼=
Z.

Before we start developing this proof, the following lemma will prove to be
useful:
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Lemma 4.32 All paths generated by a path a =loop a are rw-equal to a path
loopn, for a n ∈ Z.

We have said that from a loop, one freely generate different paths applying
the composition τ and the symmetry. Thus, one can, for example, obtain
something such as loop ◦ loop ◦ loop−1 ◦ loop.... Our objective with this lemma
is to show that, in fact, this path can be reduced to a path of the form loopn,
for n ∈ Z.
Proof. The idea is to proceed by induction on the number n of loops, i.e.,
loopn. We start from a base ρ. For the base case, it is trivially true, since
we define it to be equal to loop0. From ρ, one can construct more complex
paths by composing with loop or σ(loop) on each step. We have the following
induction steps:

• A path of the form ρ concatenated with loop: We have ρ ◦ loop =
τ(loop, ρ) =trr loop = loop1;

• A path of the form ρ concatenated with σ(loop): We have ρ ◦ σ(loop) =
τ(σ(loop), ρ) =trr= σ(loop) = loop−1

• A path of the form loopn concatenated with loop: We have loopn ◦ loop =
loopn+1.

• A path of the form loopn concatenated with σ(loop): We have loopn ◦
σ(loop) = (loopn−1 ◦ loop) ◦ σ(loop) =tt loop

n−1 ◦ (loop ◦ σ(loop)) =
loopn−1◦(τ(σ(loop), loop)) =tsr= loopn−1◦ρ = τ(ρ, loopn−1) =tlr loop

n−1

• A path of the form loop−n concatenated with loop: We have loop−n =
loop−(n−1) ◦ loop−1 = loop−(n−1) ◦ σ(loop). Thus, we have (loop−(n−1) ◦
σ(loop))◦loop=tt loop

−(n−1)◦(σ(loop)◦loop) = loop−(n−1)◦τ(loop, σ(loop)) =tr

= loop−(n−1) ◦ ρ = τ(ρ, loop−(n−1)) =tlr loop
−(n−1).

• a path of the form loop−n concatenated with σ(loop): We have loop−n ◦
loop−1 = loop−(n+1)

Thus, every path is of the form loopn, with n ∈ Z. �

This lemma shows that every path of the fundamental group can be repre-
sented by a path of the form loopn, with n ∈ Z.
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Theorem 4.33 Π1(S, a) ∼= Z

To prove this theorem, one could use the approach proposed in [16], defining
an encode and decode functions. Nevertheless, since our computational paths
are part of the syntax, one does not need to rely on this kind of approach to
simulate a path-space, we can work directly with the concept of path.

Theorem 4.34 Π1(S, a) ∼= Z

To prove this theorem, one could use the approach proposed in [16], defining
an encode and decode functions. Nevertheless, since our computational paths
are part of the syntax, one does not need to rely on this kind of approach to
simulate a path-space, we can work directly with the concept of path.
Proof. The proof is done by establishing a function from Π1(S, a) to Z and
then an inverse from Z to Π1(S, a). Since we have access to the previous lemma,
this task is not too difficult. The main idea is that the n on loopn means the
amount of times one goes around the circle, while the sign gives the direction
(clockwise or anti-clockwise). In other words, it is the winding number. Since
we have shown that every path of the fundamental group is of the form loopn,
with n ∈ Z, then we just need to translate loopn to an integer n and an integer
n to a path loopn. We define two functions, toInteger : Π1(S, a) → Z and
toPath : Z→ Π1(S, a):

• toInteger: To define this function, we use the help of two functions
defined in Z: the successor function succ and the predecessor function
pred. We define toInteger as follows. Of course, we use directly the fact
that every loop of S is of the form loopn with n ∈ Z:

toInteger :


toInteger([loopn]rw ≡ [ρ]rw) = 0 n = 0

toInteger([loopn]rw) = succ(toInteger([loopn−1]rw)) n > 0

toInteger([loopn]rw) = pred(toInteger([loopn+1)]rw) n < 0

• toPath: We just need to transform an integer n into a path loopn:

toPath :


toPath(n) = [ρ]rw n = 0

toPath(n) = toPath(n− 1) ◦ [loop]rw n > 0

toPath(n) = toPath(n+ 1) ◦ [σ(loop)]rw n < 0

Now we just need to show that they are inverses. To do this, we have to
check two equations:
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1. toPath(toInteger([x]rw)) = [x]rw

2. toInteger(toPath(n)) = n

From a path [x]rw, we apply Lemma 5.22 to obtain [x]rw = [loopn]rw for
some integer n. Thus toPath(toInteger([x]rw)) = toPath(toInteger([loopn]rw)) =
toPath(n) = [loopn]rw = [x]rw. The opposite direction is straightforward:
toInteger(toPath(n)) = toInteger([loopn]rw) = n. Thus, we conclude that
they are inverses. Also, the map between the operations of the groups is direct,
since we can easily map ◦ to +. This is due to the fact that loopn ◦ loopm =
loopn+m and thus, toInteger[[loopn+m]rw = n + m. It is also straightfor-
ward that toPath(n+m) = [loopn+m]rw. Thus, we establish the isomorphism
Π1(S, a) ∼= Z. �

4.13 Rules Added to LNDEQ − TRS

In this section, we have introduced 7 new rules to the LNDEQ−TRS system.
It is the following list of rules:

40. τ(µ(r), µ(s)) =tf µ(τ(r, s))
41. µg(µf (p)) =cf µg◦f (p)
42. µIdA(p) =ci p
43. τ(Hf,g(x), µg(p)) =hp τ(µf (p), Hf,g(y))
44. µf (ε∧(p, q)) =mxc ε∧(µg(p), µh(q))
45. µf (ρx) =mxp ρf(x)
46. ν(ρx) =nxp ρf(x)
47. ξ(ρ) =xxp ρ

Since we added 8 new rules to the system, a rather natural question may
arise: what about the completeness of this rewrite system. Is it now complete?
The formal answer to this question is that we have not proved the completeness
of this system yet. In this work we added rules that were not previously found
and that involve simple combinations of computations of inference rules such as
µ and ν. We then showed that our system is now powerful enough to formalize
all basic types of homotopy type theory. Nevertheless, we think that it is
important to formalize a proof of completeness of our rewrite system and this
will be one of the main topics of research for future works.

Another important topic is the proof of termination and confluence of this
system. We have mentioned that this proof was obtained in the works of
[2, 4, 3, 6]. Nevertheless, since we added new rules, we need to extend this
proof to include these rules. To do that, we can use the same techniques
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used in these previous works. Even so, extending this proof might not be
completely straightforward and could involve a good amount of work. Given
the importance of this proof, we also leave this work as one of the main focus
of our future works.

5 Conclusion

In this work, we connected our computational path approach to homotopy
type theory. Using the algebra of computational paths, we have established
important results of homotopy type theory. That way, we have shown that our
approach yields the main building blocks of homotopy type theory, on par with
the classic approach. We have also improved the rewrite system, adding new
reduction rules. Indeed, we have ended this work with one of the most classic
results of algebraic topology, the fact that the fundamental group of the circle
is isomorphic to the group of integers.

In view of all results achieved in this work, we have developed a valid al-
ternative approach to the identity type and homotopy type theory, based on
this algebra of paths. We also believe that we have opened the way, in future
works, for possible expansions of this results, opening the possibility of for-
mulating and proving even more intricate concepts and theorems of homotopy
type theory using computational paths. We have also used the results obtained
in section 4 to calculate the fundamental group of other spaces besides the cir-
cle. We present these calculations in a new and still unpublished work, but
already available in a preprint version that can be checked in [9].
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Appendices

A Subterm Substitution

In Equational Logic, the sub-term substitution is given by the following infer-
ence rule [4]:

s = t
sθ = tθ

One problem is that such rule does not respect the sub-formula property.
To deal with that, [13] proposes two inference rules:

M = N C[N ] = O
IL

C[M ] = O

M = C[N ] N = O
IR

M = C[O]

where M, N and O are terms.
As proposed in [7], we can define similar rules using computational paths,

as follows:

x =r C[y] : A y =s u : A′

x =subL(r,s) C[u] : A

x =r w : A′ C[w] =s u : A

C[x] =subR(r,s) u : A

where C is the context in which the sub-term detached by ’[ ]’ appears and A′

could be a sub-domain of A, equal to A or disjoint to A.
In the rule above, C[u] should be understood as the result of replacing every

occurrence of y by u in C.

B List of Rewrite Rules

We present the rewrite rules of LNDEQ−TRS. They are as follows (We show
only the original 39 rules as proposed by [2] and [7]. The new rules added to
the system appears in the end of section 5):

1. σ(ρ) .sr ρ
2. σ(σ(r)) .ss r
3. τ(C[r], C[σ(r)]) .tr C[ρ]
4. τ(C[σ(r)], C[r]) .tsr C[ρ]
5. τ(C[r], C[ρ]) .trr C[r]
6. τ(C[ρ], C[r]) .tlr C[r]
7. subL(C[r], C[ρ]) .slr C[r]
8. subR(C[ρ], C[r]) .srr C[r]
9. subL(subL(s, C[r]), C[σ(r)]) .sls s
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10. subL(subL(s, C[σ(r)]), C[r]) .slss s
11. subR(C[s], subR(C[σ(s)], r)) .srs r
12. subR(C[σ(s)], subR(C[s], r)) .srrr r
13. µ1(ξ1(r)) .mx2l1 r
14. µ1(ξ∧(r, s)) .mx2l2 r
15. µ2(ξ∧(r, s)) .mx2r1 s
16. µ2(ξ2(s)) .mx2r2 s
17. µ(ξ1(r), s, u) .mx3l s
18. µ(ξ2(r), s, u) .mx3r u
19. ν(ξ(r)) .mxl r
20. µ(ξ2(r), s) .mxr s
21. ξ(µ1(r), µ2(r)) .mx r
22. µ(t, ξ1(r), ξ2(s)) .mxx t
23. ξ(ν(r)) .xmr r
24. µ(s, ξ2(r)) .mx1r s
25. σ(τ(r, s)) .stss τ(σ(s), σ(r))
26. σ(subL(r, s)) .ssbl subR(σ(s), σ(r))
27. σ(subR(r, s)) .ssbr subL(σ(s), σ(r))
28. σ(ξ(r)) .sx ξ(σ(r))
29. σ(ξ(s, r)) .sxss ξ(σ(s), σ(r))
30. σ(µ(r)) .sm µ(σ(r))
31. σ(µ(s, r)) .smss µ(σ(s), σ(r))
32. σ(µ(r, u, v)) .smsss µ(σ(r), σ(u), σ(v))
33. τ(r, subL(ρ, s)) .tsbll subL(r, s)
34. τ(r, subR(s, ρ)) .tsbrl subL(r, s)
35. τ(subL(r, s), t) .tsblr τ(r, subR(s, t))
36. τ(subR(s, t), u) .tsbrr subR(s, τ(t, u))
37. τ(τ(t, r), s) .tt τ(t, τ(r, s))
38. τ(C[u], τ(C[σ(u)], v)) .tts v
39. τ(C[σ(u)], τ(C[u], v)) .tst u.


